Multifunctional Metal Matrix Composite Filament Wound Tank Liners, Phase I

Completed Technology Project (2010 - 2010)

Project Introduction

Metal Matrix Composite (MMC) materials offer tremendous potential for lightweight propellant and pressurant tankage for space applications. Thin MMC liners for COPVs would have enough strength to withstand tensile loading at maximum expected operating pressure (MEOP) and compressive loading at zero pressure without buckling. Thus, performance benefits would be expected when compared to aluminum, titanium, and stainless steel liners. Touchstone proposes to team with Carleton Technologies Pressure Vessel Division (part of the Cobham Life Support Division, Westminster, MD) to extend current MMC technology into the area of lightweight, multifunctional pressure vessels that can minimize propulsion system mass growth and achieve the efficiencies that will make future propulsion systems viable. The development of improved cryotanks can easily be extended to programs within the Departments of Defense and to private industry. The successful completion of the proposed work will expedite the implementation of this enabling technology into aerospace, military, and commercial applications.

Primary U.S. Work Locations and Key Partners

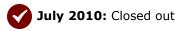
Multifunctional Metal Matrix Composite Filament Wound Tank Liners, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Multifunctional Metal Matrix Composite Filament Wound Tank Liners, Phase I


Completed Technology Project (2010 - 2010)

Organizations Performing Work	Role	Туре	Location
Touchstone Research	Lead	Industry	Triadelphia,
Laboratory, Ltd.	Organization		West Virginia
Marshall Space Flight Center(MSFC)	Supporting	NASA	Huntsville,
	Organization	Center	Alabama

Primary U.S. Work Locations		
Alabama	West Virginia	

Project Transitions

January 2010: Project Start

Closeout Documentation:Final Summary Chart(https://techport.nasa.gov/file/140102)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Touchstone Research Laboratory, Ltd.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

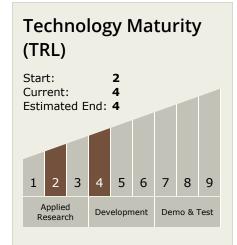
Carlos Torrez

Principal Investigator:

Brian L Gordon

Co-Investigator:

Brian S Gordon



Small Business Innovation Research/Small Business Tech Transfer

Multifunctional Metal Matrix Composite Filament Wound Tank Liners, Phase I

Completed Technology Project (2010 - 2010)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - □ TX12.4 Manufacturing
 □ TX12.4.4 Sustainable
 Manufacturing

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

